AAGBI Guidelines: Safer pre-hospital anaesthesia 2016
Membership of the Working Party

Prof David Lockey Working Party Chairman
Prof Jerry Nolan Royal College of Anaesthetists
Dr Samantha Shinde AAGBI
Dr Juergen Klein Faculty of Pre-hospital Care, Royal College of Surgeons of Edinburgh
Dr Sean Tighe AAGBI
Dr Brian Jenkins Editor, *Anaesthesia*
Prof Peter Mahoney Department of Military Anaesthesia
Dr Malcolm Russell Royal College of General Practitioners
Dr Gareth Davies Royal College of Emergency Medicine
Dr Jonny Price Group of Anaesthetists in Training
Dr Chris Wright Military Pre-hospital Emergency Medicine
Dr Andrew Pountney British Association for Immediate Care
Dr Colville Laird British Association for Immediate Care Scotland
Dr Kate Crewdson Trainee/Working Party Co-ordinator
Contents

Section 1 Summary and Recommendations

Section 2 Background

Section 3 Local organisation

Section 4 Personnel and training

Section 5 Equipment and monitoring

Section 6 Technique (general principles)

Section 7 Pre-anaesthesia sedation

Section 8 Transport

Appendix 1 Safe anaesthesia in challenging environments

Appendix 2 Minimum data collection and key performance indicators

References
Summary and recommendations

1. Pre-hospital rapid sequence induction (RSI) of anaesthesia with oral tracheal intubation is the technique of choice for trauma patients who cannot maintain their airway or achieve adequate ventilation.
2. RSI should be carried out as soon as safely possible in this patient group.
3. Pre-hospital emergency anaesthesia (PHEA) should be carried out to the same standards as in-hospital emergency anaesthesia.
4. PHEA should only be conducted within organisations with comprehensive clinical governance arrangements.
5. PHEA techniques should be straightforward, reproducible and as simple as possible and supported by the use of checklists.
6. Practitioners need to be competent in the provision of in-hospital emergency anaesthesia and have supervised pre-hospital experience before carrying out PHEA. Current UK training programmes do not allow the safe paramedic delivered PHEA.
7. Monitoring and equipment should meet in-hospital anaesthesia standards.
8. Where PHEA skills are not available, oxygenation and ventilation should be maintained with the use of second generation supraglottic airways in patients without airway reflexes or basic airway manoeuvres and basic airway adjuncts in patients with intact airway reflexes.
What other guideline statements are available on this topic?

Why were these guidelines developed?
The guidelines were first developed because pre-hospital anaesthesia is carried out on a daily basis in the UK and standards of care were ill defined. The guideline set achievable standards which were endorsed by all key organisations. This version updates the guidelines taking into account changes in clinical practice, pre-hospital infrastructure and new related guidelines which have impacted on the practice of pre-hospital anaesthesia.

How and why does this statement differ from existing guidelines?
This updated guideline emphasises the core material produced in the initial guideline but is updated to take into account changes in UK pre-hospital infrastructure and recent guidelines on airway management, trauma management and emergency in-hospital anaesthesia and monitoring. There are significant differences to Scandinavian and US guidelines mostly related to differences in EMS infrastructure and providers.
2. Background

There are existing local and national guidelines for pre-hospital emergency anaesthesia (PHEA) and airway management [2], [4]. Since the first version of these UK guidelines was produced [1] significant developments have taken place in UK pre-hospital care. The number of air ambulances staffed with doctor-paramedic teams in the UK has increased, and with this the frequency of PHEA. Pre-hospital emergency medicine (PHEM) has been recognised by the General Medical Council as a sub-specialty, and pre-hospital training organisations are required to demonstrate clear evidence of a clinical governance structure.

Although the evidence base for pre-hospital care and PHEA is still of relatively low quality, much has been published recently. For example, available data on pre-hospital tracheal intubation failure rates have more than tripled and have been used as one indicator to confirm the importance of experience and training in successful pre-hospital anaesthesia [5,7].

In 2007, the ‘Trauma: who cares?’ National Confidential Enquiry into Patient Outcome and Death (NCEPOD) report documented poor pre-hospital airway management [8]. A significant proportion of seriously injured patients were delivered to emergency departments with airway compromise, and this is not unique to the UK [9]. More recently, it has been demonstrated that, in a significant number of trauma patients, basic and advanced airway management without PHEA does not reliably correct airway compromise [10]. The majority of severely ill and injured patients have intact airway reflexes and require drugs to facilitate tracheal intubation. In contrast, tracheal intubation has not been shown to improve outcome in patients with cardiac arrest [11], and drugs are not usually required for tracheal
intubation.
Many UK pre-hospital services have aspired to the key message of the AAGBI 2009 pre-hospital anaesthesia guidelines – that, despite variable pre-hospital conditions, the standard of care delivered should be the same as that for in-hospital emergency anaesthesia [1]. Recent evidence has shown that anaesthesia in the emergency department is not without problems [12], and the standardisation of technique along with safety adjuncts such as pre-induction checklists are probably essential in both the pre-hospital and emergency department environments.

This guideline outlines safety considerations in the key areas of pre-hospital anaesthetic practice: training and clinical governance, conduct and technique, monitoring, environmental considerations and minimum data collection for performance and incident reporting. It does not consider local and regional anaesthetic techniques.

Although there are many options for the safe delivery of PHEA, the principles of simplicity and standardisation are used in this document to provide a framework for safe delivery of emergency anaesthesia by experienced pre-hospital doctors from anaesthetic or non-anaesthetic training backgrounds. It is recognised that pre-hospital practitioners without PHEA competency provide the majority of pre-hospital care in the UK, and make an essential contribution to pre-hospital airway management. It is essential that pre-hospital personnel not trained in the delivery of PHEA ensure that basic airway manoeuvres are applied immediately and effectively for any patient with airway compromise [4]. This may be facilitated by managing the patient in the lateral trauma position where appropriate [2] [13].
3. Local organisation

All pre-hospital organisations (immediate care schemes, hospital-related schemes, Medical Emergency Response Incident Teams (MERIT), air ambulance providers and NHS Ambulance Service Trusts must provide appropriate, easily accessible and on-going support to practitioners who undertake PHEA.

Pre-hospital emergency medicine PHEM trainees undertaking PHEA without direct supervision must have immediate access to advice from a senior PHEM clinician who is fully competent in PHEA and pre-hospital critical care. Non-trainees who undertake PHEA should also ideally have reliable access to senior telephone support.

Key organisational components for safe PHEA are:
1) A named, responsible lead clinician with extensive PHEM experience, who ensures delivery of:
 - Competency-based initial and refresher training specific for PHEA, including simulation practice
 - Regular review of PHEAs undertaken and constructive feedback to individual providers
 - Regular appraisal of practitioners undertaking PHEA

2) A robust clinical governance structure that will:
 - Ensure each practitioner is competent
 - Ensure collection of key data on PHEA performed to enable quality benchmarking of pre-hospital advanced airway management [14]
 - Provide regular case reviews, audit and an adverse event reporting system feeding into a risk register database
 - Provide regular reviews of guidelines and standard operating procedures in
the light of emerging evidence

Pre-hospital anaesthesia for children

It is increasingly recognised that anaesthesia for children aged eight years or under is a sub-specialist area of in-hospital anaesthesia. Young children with severe injuries are uncommon, but can present pre-hospital practitioners with significant challenges.

All pre-hospital organisations must have written guidelines for the treatment of children that reflect the skills of their practitioners.

In general terms, the threshold for anaesthesia and tracheal intubation in young children is high. The majority can be adequately managed with simple airway techniques [15]. PHEA is considered only after careful risk-benefit analysis. This will usually mean that a skilled anaesthetic practitioner with appropriate equipment is present, and that simple airway manoeuvres combined with oxygen therapy have failed to provide a patent airway or adequate oxygenation. However, where PHEA is necessary, it is usually straightforward with high intubation success rates [16].

In difficult circumstances, rapid transfer to the nearest hospital to enable advanced airway management may be appropriate, even if definitive care needs to be undertaken at a different hospital.

4. **Personnel and training**

 Individual competence

 PHEA carries more risk than in-hospital anaesthesia. Skilled anaesthetic assistance may not be available, and both environmental and patient factors increase risk. PHEA should not be undertaken in professional isolation.
Providers should have the same level of training and competence that would enable them to perform unsupervised emergency anaesthesia and tracheal intubation in the emergency department [17] [18]. Since PHEA is potentially hazardous [12], and considerable resource is spent ensuring anaesthetists who perform rapid sequence induction (RSI) in hospital can do so safely, pre-hospital care standards should match these standards.

Some studies have demonstrated poor success rates and significant complications when RSI and tracheal intubation are undertaken by individuals with relatively little training [19]. The 2007 NCEPOD ‘Trauma: Who Cares?’ report concluded that ‘if pre-hospital intubation is to be part of pre-hospital trauma management, then it needs to be in the context of a physician-based pre-hospital care system’ [8].

The training required for undertaking pre-hospital anaesthesia safely and competently has been described by the Intercollegiate Board for Training in Pre-hospital Emergency Medicine [17]. Skills in both anaesthesia and the ability to work safely in the pre-hospital environment are required. Competence should be defined by these skills rather than by the primary specialty of the individual.

The Royal College of Anaesthetists requires that all anaesthetists in training complete an Initial Assessment of Competence before giving anaesthesia without direct supervision. This assessment is completed by the trainee after about three months of anaesthesia training, and includes the ability to perform RSI and a failed intubation routine. The Initial Assessment of Competence confirms that the individual has the essential skills to undertake anaesthesia in ASA I or II patients in hospital. However, achievement of this standard does not imply competence to induce anaesthesia in a severely
injured patient in any setting.

The two-year acute care common stem (ACCS) training programme provides individuals with six months of training in emergency and acute medicine, and a year in anaesthesia and intensive care medicine. However, doctors completing ACCS training are inexperienced in managing the airway of complex patients, and will need further training before undertaking unsupervised pre-hospital RSI and tracheal intubation.

The ACCS programme, or equivalent training, is considered the absolute minimum required for an individual entering a training programme in pre-hospital emergency medicine. Specific training for working in the pre-hospital environment is also essential. The IBTPHEM and the Faculty of Pre-hospital Care of the Royal College of Surgeons of Edinburgh are currently the lead organisations setting standards for physician pre-hospital working, qualification and competence. Ideally, doctors likely to be undertaking PHEA should, in the future, successfully complete IBTPHEM subspecialty training in pre-hospital emergency medicine [17].

Anaesthetic assistance should be provided by an appropriately trained healthcare professional who has been signed off for extended pre-hospital care practice or assessed to provide specific pre-hospital critical care skills. Rarely, it may be appropriate to proceed without trained assistance on the basis of an individual case risk-benefit analysis.

Working under the close supervision of experienced practitioners is an essential step towards independent pre-hospital practice. Having achieved PHEA competence, skills need to be maintained by undertaking the procedure regularly. The precise number of PHEAs required to maintain
competence is not defined. An average of one a month has been previously suggested as a minimum. There is a significant difference in the reported incidence of difficult tracheal intubation between clinicians considered either ‘competent’ or ‘expert’ (based on the number of intubations performed per year) [20]. Unless an individual is working in a very busy pre-hospital programme, it is likely that competence in RSI and tracheal intubation will be achieved only with regular in-hospital experience with RSI and tracheal intubation, supplemented with simulation experience where necessary. Assessment of competence in PHEA should always involve direct pre-hospital observation by experienced senior clinicians. Simulator practice may helpfully supplement clinical experience. Practitioners undertaking PHEA must keep a log of procedures to be included in a clinical governance structure.

Crew resource management techniques are of particular importance in the pre-hospital environment, and it is critical that teams have the opportunity to train and practice regularly in order to ensure the best possible delivery of care. Pre-hospital care teams need to be adaptable to changes in their environment to ensure scene and patient safety.

The working party is aware of variable international practice with regards to paramedic-delivered drug-assisted intubation. Although paramedic-delivered PHEA is relatively uncommon, the administration of sedation to facilitate intubation is also reported in some healthcare systems. Working party members are aware of published evidence that highlighted major safety concerns, particularly where paramedics have administered neuromuscular blocking drugs [21-22], and do not believe that existing training programmes enable safe unsupervised administration of anaesthesia by UK paramedics outside doctor-paramedic teams. A similar position is stated in recent NICE
trauma guidelines [4].

The working party believes that all practitioners providing PHEA should have adequate in-hospital emergency anaesthetic training and experience to be able to demonstrate the necessary competencies before adapting practice for pre-hospital practice.
5. **Equipment and monitoring**

Standards of equipment and monitoring used for PHEA should match those applied to in-hospital anaesthetic practice [23]. To prevent cross-infection, most pre-hospital providers have to use ambulance or hospital sterilisation facilities or rely on disposable equipment.

Equipment

Pre-hospital equipment must be portable, robust and weather-resistant, and be effective under varying lighting conditions. Electrical equipment must have an adequate battery reserve. Equipment for very adverse conditions (e.g. extreme temperature environments) needs careful selection and confirmation of suitability before use.

The equipment required for pre-hospital anaesthesia is shown in Table 1.

<table>
<thead>
<tr>
<th>Monitoring equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen (sufficient for PHEA and transfer to hospital, with reserve)</td>
</tr>
<tr>
<td>An adequate supply of drugs (ideally pre-prepared and drawn up into labelled syringes) for induction and maintenance of anaesthesia.</td>
</tr>
<tr>
<td>Intubation equipment, to include an intubating bougie and spare laryngoscope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simple airway adjuncts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suction: hand or battery operated</td>
</tr>
<tr>
<td>Ventilation equipment: self-inflating bag-mask with an oxygen reservoir (as a minimum)</td>
</tr>
<tr>
<td>Mechanical ventilators: properly serviced and checked with appropriate pressure relief systems and alarms</td>
</tr>
</tbody>
</table>
Rescue airway equipment: second generation supraglottic airway device and surgical airway equipment.

Vascular access equipment: intravenous and intra-osseous

Lighting where appropriate

Procedural checklists

Monitoring

Clinical assessment combined with monitoring is used to record the patient's condition from the preparation phase, through induction and maintenance and into the post intubation and transfer phase. Measured values can be recorded manually or electronically during the whole period, although it is recognised that manual recording is difficult in an emergency.

Clinical measurement and observation should include:

- Presence or absence of pulse, its location and rate
- Respiratory rate
- Pupil size and reactivity, lacrimation if present
- Presence or absence of muscular activity and limb movements

Invasive monitoring is possible, but can be difficult in the pre-hospital phase and is mainly used in inter-hospital transfer. Non-invasive monitoring includes, as a minimum:

- Heart rate
- Non-invasive blood pressure
- Oxygen saturation
- Continuous waveform capnography
- Electrocardiograph [23]

Vital signs should be measured and recorded at least every three minutes. As oxygen is the only gas used during PHEA, anaesthetic gas monitoring is not
required. Nerve stimulation devices are rarely used in the pre-hospital environment. With these exceptions monitoring in the pre-hospital environment should aim to meet the current AAGBI guidelines on anaesthetic monitoring. Monitoring of ETCO$_2$ is mandatory during PHEA. Although qualitative capnography can be used to help confirm intubation, quantitative waveform capnography is required to prevent hyper or hypoventilation. It is important to ensure that the system is connected and functional prior to induction. Consider temperature monitoring particularly for vulnerable patient groups (e.g. children or those with significant burns).

Audiovisual alarms on monitoring equipment are set so that they can be detected in the noisy pre-hospital environment. Monitoring may need to be temporarily suspended during difficult extrication.
6. Technique (general principles)

The principles of PHEA are similar to those for in-hospital emergency anaesthesia. Techniques should be simple, reproducible and well practiced. A primary aim is to secure first-pass tracheal intubation with minimal cardiorespiratory compromise. Most commonly used induction drugs and neuromuscular blocking drugs can be used in pre-hospital care with appropriate considerations. Drug choice depends on the physiological state of the patient and operator familiarity with the drug.

The balance between optimising clinical condition prior to transfer and getting the patient to definitive care without delay will determine which interventions are undertaken before transport to hospital. Although PHEA increases 'scene time', time in the emergency department and time to definitive surgical intervention may still be reduced. Performing the intervention must still be weighed against the advantages of earlier transport to hospital, and every effort must be made to keep pre-hospital time to a minimum.

Preparation
Careful preparation of the patient and equipment will decrease the frequency of complications. The patient should ideally be positioned to allow 360° access at a comfortable height for airway intervention (e.g. on an ambulance trolley) in adequate but not bright light to optimise the view at intubation. A standardised 'kit dump' is prepared so that the drugs and equipment necessary for safe anaesthesia are immediately available. The pre-hospital team should be thoroughly familiar with all medical equipment. A verbal challenge-response pre-induction checklist is an effective method of confirming availability of equipment, doses of drugs to be administered and the failed intubation management plan.
Fully brief the pre-hospital team – ideally, four people are required:

1. PHEA physician
2. Anaesthetic assistant
3. Provider of manual in-line stabilisation
4. Provider of cricoid pressure and/or laryngeal manipulation (sometimes combined with role two)

Genuine entrapment is rare, and most trapped patients can be rapidly extricated to facilitate airway management. Simple airway manoeuvres and adjuncts may be used to avoid airway obstruction before rapid extrication. If these measures fail, insertion of a supraglottic device, intubation or a primary surgical airway may be necessary.

Pre-oxygenation

Pre-oxygenate all patients. A head-elevated position can improve oxygenation and reduce the risk of aspiration. A reverse Trendelenburg position can be used if spinal injury is suspected.

Pre-oxygenation in spontaneously breathing patients may be achieved using high-flow oxygen delivered through a facemask with a reservoir bag. Hypoxaemic patients (SaO₂ < 90%) or patients with poor respiratory effort usually require gentle ventilatory assistance with a bag-mask to facilitate pre-oxygenation. The risk of gastric distension and subsequent aspiration can be reduced if ventilation pressures are less than 25 cm H₂O [24].

The provision of apnoeic oxygenation with oxygen via standard nasal cannulae may prolong the time to post induction desaturation. Whilst this intervention has been demonstrated to decrease in the incidence of desaturation in PHEA [25], other studies have produced variable results and
the practice remains controversial [26-29].

Induction

Hard collars limit jaw opening and restrict the view at laryngoscopy. Once manual in-line stabilisation is established, the front of the collar and head blocks are removed before induction of anaesthesia and replaced after induction.

Select the dose of induction drug based on the usual considerations, e.g. modified for hypotensive or head-injured patients. Simple techniques minimise the chance of error.

Cricoid pressure is applied during the induction of anaesthesia to reduce the risk of aspiration. This may make bag-mask ventilation and insertion of supraglottic devices difficult and may worsen the view at laryngoscopy [30]. Where a poor laryngoscopic view is encountered there should be a low threshold for removal of cricoid pressure. Cricoid pressure may also be used to provide laryngeal manipulation and bring the larynx into view.

Intubation

Patients with airway compromise in the pre-hospital environment may be challenging and difficult intubation should be anticipated. Every effort is made to ensure successful first-pass intubation, and in critically ill patients the practitioner with most anaesthetic experience should usually be the first to attempt intubation. Routine use of an intubating bougie is recommended. Pre-hospital organisations may approve other 'difficult airway' equipment at a local level.

The number of tracheal intubation attempts is limited to three [31] and where
possible the conditions for successful intubation improved between each attempt. If a patient becomes hypoxaemic during intubation attempts, ventilate the lungs using a facemask or supraglottic device. Articulating the nature of a problem to the anaesthetic assistant can improve team performance and enhance patient safety.

All pre-hospital organisations must have a written and well-rehearsed 'failed intubation' plan. This should include the use of a second-generation supraglottic airway rescue device, and clear indications/instructions for performing surgical cricothyroidotomy. Standard, easily reproducible techniques are described in the 2015 Difficult Airway Society guidelines [31]. It is unclear if there is any role for needle cricothyroidotomy. It is associated with high rates of complication and failure, and always requires conversion to a standard surgical cricothyroidotomy [32-33].

Correct tracheal tube placement must be confirmed by standard clinical assessment and waveform capnography, and repeated each time the patient is moved. The breathing system (self-inflating bag or portable ventilator) should be connected using an in-line heat and moisture exchange filter.

After confirmation of correct placement, the tracheal tube is secured. A circumferential tie may impair venous drainage of the head and neck, and it is preferable to use self-adhesive tape for head-injured patients.

Post intubation care
Wherever possible, practical procedures are completed before patient transport as they are more difficult to perform safely once transfer is underway. Prepare the patient for transfer by ensuring accessible intravenous access and adequate oxygen supplies. Although high-flow oxygen therapy is
routine practice in trauma care, it is sometimes necessary to use lower flows for stable patients, titrated against oxygen saturations to conserve supplies for the duration of transfer.

Where possible, commence post-intubation critical care in the pre-hospital phase of care. Use lung-protective ventilation strategies, but reduction or removal of positive end-expiratory pressure may be necessary in hypovolaemic patients. Adjust ventilation to achieve hypo to normocapnia, equivalent to an ETCO$_2$ of 4.0–4.5 kPa. The correlation between arterial and ETCO$_2$ may be reduced in patients with significant physiological or anatomical derangement. Abnormal ETCO$_2$ is associated with increased mortality [34]. The use of transport ventilators rather than continued hand ventilation may decrease the risk of hyperventilation and free up a member of the pre-hospital team [35].

In most patients a hypnotic drug (e.g. midazolam or propofol) will be required to maintain sedation during transfer. Accidental anaesthetic awareness is more likely whenever neuromuscular blocking drugs are used, particularly in the emergency setting in patients with high pre-induction Glasgow coma scores [36]. Small, frequent doses of sedatives minimise haemodynamic side effects and should be titrated against physiological variables. Infusions may be preferable for longer transfers, but infusion pumps may make transfer more complex.

Historically, there have been concerns about using ketamine in patients with head injury because of the risk of increases in intracranial pressure. These concerns are of little practical significance, and the drug is now frequently used in PHEA in patients with head injury [37-38]. Relative haemodynamic stability makes ketamine an attractive induction drug for pre-hospital trauma.
care, but the sympathomimetic effects may have disadvantages where anaesthesia is delivered post cardiac arrest or in patients with severe cardiac disease.
7. Pre-anaesthesia sedation

Background
Sedation remains a cause of significant morbidity and mortality, despite the recent publication of comprehensive guidelines that advocate knowledge, skills and a competency-assessed framework for all clinicians using sedation. Patients requiring PHEA are frequently critically unwell and susceptible to the complications of sedation. This guideline considers sedation practice only in association with PHEA, but notes that practitioners undertaking pre-hospital sedation should be trained to the same standards as those developed for safe in-hospital practice [39], and must also have the requisite skills to deal with potential life-threatening complications. Working party members are aware of recent discussions related to sedation to allow insertion of supraglottic devices for airway management where PHEA skills are not available. There is no evidence base to support this practice and the safety and potential benefits of this procedure are not established.

Potential benefits
Patients who require PHEA may be confused, agitated or even combative [40]. Underlying anxiety, pain and hypoxia can be exacerbated by failure to comply with simple treatments such as oxygen administration, so that pre-oxygenation prior to PHEA may be ineffective. Judicious use of sedation can facilitate the establishment of monitoring and ensure adequate pre-oxygenation.

Physical restraint may be required to prevent the patient from harming themselves or others. Restraint may precipitate a rise in blood pressure or intracranial pressure, threaten undiagnosed spinal injury, disturb clot formation and promote bleeding [41]. Performing physical restraint may also
interfere with the performance of the treating team. Provision of anxiolysis and sedation may also improve the ability of the operator to deal with other elements of the patient’s care or scene management.

Potential disadvantages
In critically unwell patients, the speed of onset and effect of sedatives may be significantly altered and a reduced dose may be required. Excessive sedation may cause hypoxia, hypercapnia and hypotension through:

- Loss of the airway
- Ventilatory depression
- Vasodilatation

Principles of sedation before rapid sequence induction
- Ensure non-pharmacological methods of reducing anxiety and agitation are employed. Do not crowd the patient, and use a ‘single face’ point of contact for the patient
- Achieve a target level of sedation [39]. The patient should be quiet, but responsive to verbal or painful stimuli
- Identify high-risk patients: those who are frail, elderly, critically ill, or have concomitant use of other drugs, e.g. opioids [42]
- Dilution of the sedative helps to provide better control of the dose administered
- For sedation, the intravenous route should be used in preference to intramuscular or other routes [39]
- Titrate small doses of sedation to achieve the desired effect [43] (e.g. 1–2 mg increments of midazolam). In frail, elderly, haemodynamically unstable patients consider even smaller increments
- ETCO₂ monitoring must be used for all patients undergoing moderate or deep sedation [39]
When to consider intramuscular sedation

Where intravascular access is difficult (e.g. in combative patients or those with a history of intravenous drug abuse) it may be necessary to sedate the patient using the intramuscular route [43]. As titration is not possible, a drug such as ketamine that will not cause respiratory or cardiovascular collapse should be used. Once the patient is sedated, peripheral, central or intraosseous access can be established before proceeding with anaesthesia. Oral sedation may also be considered in some circumstances. The intranasal route has also been used successfully for pre-hospital sedation and analgesia particularly in children.
8. Transport

Following induction of anaesthesia, the patient should usually be transported directly to an appropriate hospital [4]. Secondary transfer can be detrimental to patient outcome, particularly in time-critical injury [44]. Standards of care initiated at induction of anaesthesia must be continued during transport, including:

- Continuous monitoring of vital signs – ECG, blood pressure, pulse oximetry and waveform capnography
- Maintenance of anaesthesia - adequate sedation, analgesia and, if necessary, neuromuscular blockade
- The provision of supporting equipment – airway suction, intubation equipment, intravenous fluids
- Contemporaneous written or automatically generated records of vital signs and treatment interventions

Consider the transport process (availability and type of vehicle, distance and time to definitive care, journey and terrain) before undertaking pre-hospital anaesthesia. The transport vehicle must be suitable for the safe transfer of an anaesthetised patient and the attending team. A properly fixed, safe patient-carrying device should be used, with straps to keep the patient secure during transit. To ensure the safety of personnel, all equipment should be secured and the transporting team should remain seated and restrained. Transport vehicles must comply with road safety or air transport regulations, and be driven/piloted by a trained person experienced in patient transport. Pre-hospital personnel who perform aeromedical transfer must have undertaken specific training [45].

The receiving hospital must be given sufficient warning of the patient’s arrival, and the transferring clinician is responsible for patient handover to the
receiving clinical team. The AAGBI and the Intensive Care Society have published recommendations on the transfer of ill and injured patients [45-46], most of which are applicable to the transportation of patients who have undergone PHEA.
Appendix 1. Safe anaesthesia in challenging environments

The practice of PHEA in genuinely dangerous or extreme environments carries additional risks that must be considered in the planning and delivery of care. Such environments may include:

- Areas of conflict, including battlefields or civil disturbances
- Areas of extreme climate and/or high altitude
- Areas with risk of exposure to chemical, biological, radiological or nuclear (CBRN) threats
- Areas that are remote or difficult to access

Constraints are usually related to access, time, threat, resource limitation and the capacity of the emergency medical services system.

General principles

The standards of care described in this guideline are applicable even in adverse environments. Where this is not possible, careful consideration must be given as to whether the delivery of PHEA is appropriate. If not, measures to proceed safely without PHEA must be considered. This includes the planning of remote expeditions, where only in exceptional circumstances is the level of medical support drugs and equipment available to perform PHEA.
Personal protective equipment
Consideration must be given to the safety of the pre-hospital team and their patients. Suitable personal protective equipment is essential for all involved, but practitioners need to be aware that equipment such as body armour can make standard techniques difficult. This is especially the case in the CBRN environment, where the conduct of conventional anaesthesia is often impossible. Biological hazards may preclude the use of high-level interventions even when they are available. Threats to practitioners and equipment may outweigh the potential benefit of PHEA.

Scene safety
The casualty should be moved to the safest available location before any intervention. In general, the threat of remaining exposed to assault, extremes of temperature or other highly adverse conditions is likely to outweigh the risk of delaying PHEA.

Threats can develop rapidly in adverse environments, and practitioners must understand that their situational awareness will be significantly impaired while concentrating on PHEA or other complex interventions. Other team members should monitor and maintain scene safety.

Competence and training
In addition to the general competency requirements associated with PHEA, practitioners working in adverse environments should ideally undertake additional training specific to the area of their work (for example mountain medicine, tropical medicine or combat casualty care).
Appendix 2. Minimum data collection and key performance indicators

Minimum data collection

PHEA is increasingly practiced and yet remains supported by few data. The data are heterogeneous, making it difficult to draw meaningful conclusions. Advanced airway management in pre-hospital care has been identified by an expert panel as a research priority [47], and consensus-derived datasets need to be developed [14, 48]. Adequate data collection is essential to underpin local audit and clinical governance processes.

The following variables have been suggested as part of the minimum dataset:

System variables:

- Highest level of emergency medical service provider on scene
- Airway equipment available
- Anaesthetic drugs available
- Methods of transportation
- Response times
Patient variables:
- Age
- Gender
- Co-morbidities
- Estimated weight
- Presenting illness/injury
- Indication for airway intervention

Intervention variables:
- Vital signs pre and post induction of anaesthesia
- Drugs (and doses) used
- Number of intubation attempts
- Intubation success
- Management of failed intubation
- Devices used in successful airway management
- Adverse events including hypoxia, hypotension, arrhythmias (bradycardia), aspiration, misplaced tracheal tube, oesophageal intubation (recognised / unrecognised), cardiac arrest

Key Performance Indicators (KPIs)
Measuring quality in PHEM can be challenging. The categorisation of KPIs has been previously described [49],
and might be helpful in defining KPIs for PHEA. Examples are shown below.

Structure/system
- Routine use of a standard operating procedure and checklist for PHEA
- All team members familiar with failed intubation plan
- Daily equipment checks performed
- Full monitoring, including continuous waveform capnography, available

Process
- Pre-oxygenation performed for 3 minutes
- Intubation performed by experienced airway provider
- No decrease of more than 20% in systolic BP
- No decrease in $\text{SaO}_2 < 90\%$, or fall of $>10\%$ from starting value
- No more than two attempts required for intubation

Outcome
- Position of tracheal tube maintained using waveform capnography
- Adequate anaesthesia maintained during transfer
- Cardiovascular stability maintained
- Ventilation titrated to ETCO$_2$
The exact content of the dataset and KPIs may be adapted to specific systems and their governance projects.
References

patients with difficult airways. *Anaesthesia* 2014;70:323–9

